The Status of CO₂ Capture and Storage Technology

Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to the National Renewable Energy Laboratory Golden, Colorado July 12, 2010

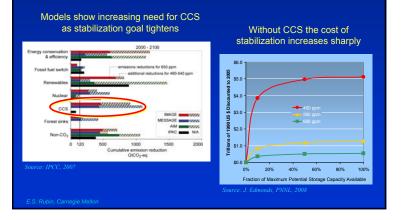
Outline of Talk

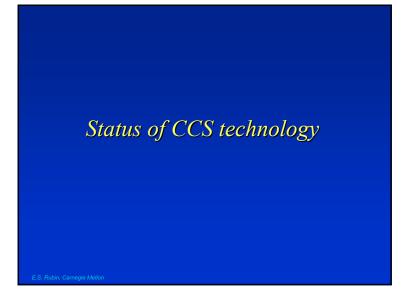
- Why the interest in CCS?
- Status of current CCS technology
- Current cost estimates
- Potential for cost reductions

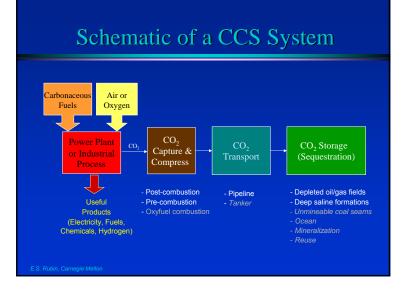
Why the interest in CCS?

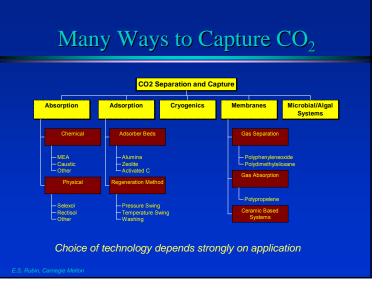
(Carbon Capture and Storage /Sequestration)

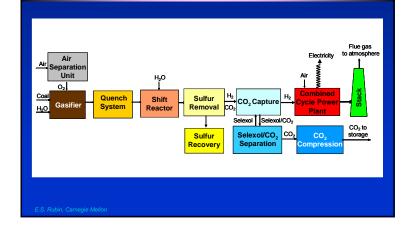
Motivation for CCS


- Stabilizing atmospheric GHG concentrations will require large reductions in CO₂ emissions. But ...
- Fossil fuels will continue to be used for many decades —alternatives not able to substitute quickly
- CCS is the ONLY way to get large CO₂ reductions from fossil fuel use—a potential bridging strategy
- CCS can also help decarbonize the transportation sector via low-carbon electricity and hydrogen from fossil fuels

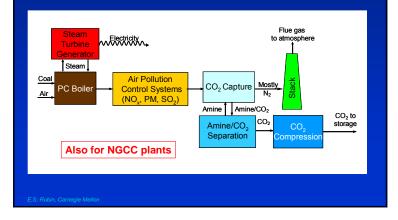

1


• Energy models show that without CCS, the cost of mitigating climate change will be <u>much</u> higher

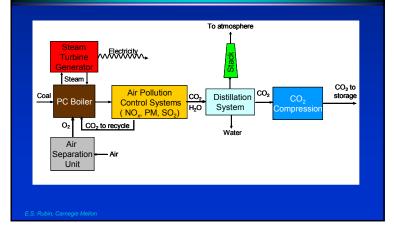

.S. Rubin, Carnegie Mellon

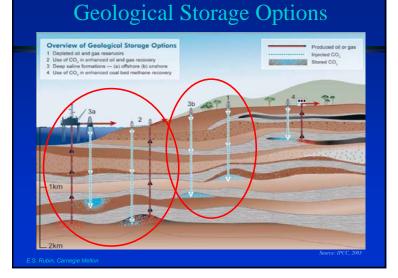

Leading Candidates for CCS

• Fossil fuel power plants


- Pulverized coal combustion (PC)
- Natural gas combined cycle (NGCC)
- Integrated coal gasification combined cycle (IGCC)
- Other large industrial sources of CO₂ such as:
 - Refineries, fuel processing, and petrochemical plants
 - Hydrogen and ammonia production plants
 - Pulp and paper plants
 - Cement plants
- Main focus is on power plants, the dominant source of CO_2 –

E.S. Rubin, Carnegie Mello


CO₂ Capture Options for Power Plants: Pre-Combustion Capture



CO₂ Capture Options for Power Plants: Post-Combustion Capture

CO₂ Capture Options for Power Plants: Oxy-Combustion Capture

Status of CCS Technology

- Pre- and post-combustion CO₂ capture technologies are commercial and widely used in industrial processes; also at several gas-fired and coal-fired power plants, at small scale (~40 MW); CO₂ capture efficiencies are typically 85-90%. Oxyfuel capture is still under development.
- CO₂ transport via pipelines is a mature technology.
- Geological storage of CO₂ is commercial on a limited basis, mainly for EOR; several projects in deep saline formations are operating at scales of ~1 Mt CO₂ /yr.
- Large-scale integration of CO₂ capture, transport and geological sequestration has been demonstrated at several industrial sites (outside the U.S.) but not yet at an electric power plant at full-scale.

Examples of Pre-Combustion CO₂ Capture Systems

Petcoke Gasification to Produce H₂ (Coffeyville, Kansas, USA)

Coal Gasification to Produce SNG (Beulah, North Dakota, USA)

Pre-Combustion Capture at IGCC Plants

4

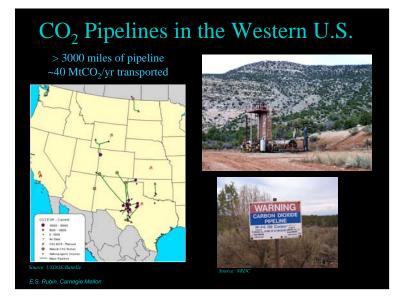
Post-Combustion Technology for Industrial CO₂ Capture

Post-Combustion CO₂ Capture at a Gas-Fired Power Plant

Bellingham Cogeneration Plant (Bellingham, Massachusetts, USA)

Post-Combustion CO₂ Capture at Coal-Fired Power Plants

Shady Point Power Plant (Panama, Oklahoma, USA)

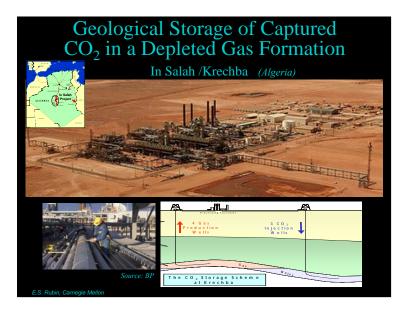


Warrior Run Power Plant (Cumberland, Maryland, USA)

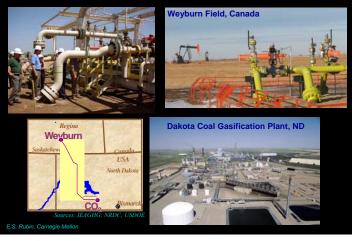
Oxy-Combustion CO₂ Capture from a Coal-Fired Boiler

30 MW_t Pilot Plant (~10 MW_e) at Vattenfall Schwarze Pumpe Station *(Germany)*

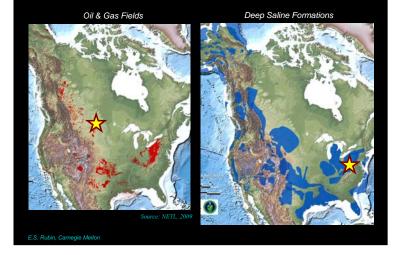
Large-Scale CCS Projects


Project	Operator	Geological Reservoir	Injection Start Date	Injection Rate (MtCO ₂ /yr)
Sleipner (Norway)	StatoilHydro	Saline Formation	1996	1.0
Weyburn (Canada)	EnCana	Oil Field (EOR)	2000	1.2*
In Salah (Algeria)	Sonatrach, BP, StatoilHydro	Depleted Gas Field	2004	1.2
Snohvit (Norway)	StatoilHydro	Saline Formation	2008	0.7

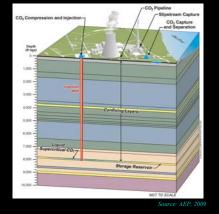
Average rate over 15 year contract. Recent expansion to ~3 Mt/yr for Weyburn + Midale field...


Geological Storage of Captured Opened Storage of Captured Steppe Saline Formation

Geological Storage of Captured CO_2 in a Deep Saline Formation



Geological Storage of Captured CO₂ with Enhanced Oil Recovery (EOR)


Geological Formations in North America

CCS at a Coal-Fired Power Plant with Storage in a Deep Saline Formation (Pilot plant scale)

20 MW capture unit at AEP's Mountaineer Power Plant (West Virginia)

Still Missing

- Full-scale power plant demo #1
- Full-scale power plant demo #2
- Full-scale power plant demo #3
- Full-scale power plant demo #4
- Full-scale power plant demo #5
- Full-scale power plant demo #6
- Full-scale power plant demo #7
- Full-scale power plant demo #8
- Full-scale power plant demo #9
- Full-scale power plant demo #10

E.S. Rubin, Carnegie Mello

Full-Scale Demonstration Projects Are Urgently Needed to . . .

- Establish the reliability, safety and true cost of CCS in full-scale power plant applications
- Help resolve legal and regulatory issues regarding geological sequestration
- Help address issues of public acceptance
- Begin reducing future costs via learning-by-doing

- Cost per project ≈ \$1 billion (install/operate CCS, 400 MW, 5 yrs)

Financing large-scale projects has been a major hurdle

Many projects are planned or underway at various scales

Map shows operating plus proposed or planned projects in the U.S. and Canada. They encompass power plants, industrial sources and research projects spanning a large range of scale.

E.S. Rubin, Carnegie Mellon

Substantial CCS Activity Globally

8

Roadmaps for CCS Deployment

The cost of CCS

Many Factors Affect CCS Costs

- Choice of Power Plant and CCS Technology
- Process Design and Operating Variables
- Economic and Financial Parameters
- Choice of System Boundaries; *e.g.*,
 - One facility vs. multi-plant system (regional, national, global)
 - GHG gases considered (CO₂ only vs. all GHGs)
 - Power plant only vs. partial or complete life cycle
- Time Frame of Interest
 - First-of-a-kind plant vs. *n*th plant
 - Current technology vs. future systems
 - Consideration of technological "learning"

E.S. Rubin, Carnegie Me

E.S. Rubin, Carnegie Mellon

Common Measures of Cost

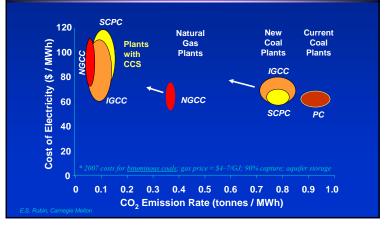
• Cost of Electricity (COE) (
$$MWh$$
)
= $\frac{(TCC)(FCF) + FOM}{(CF)(8760)(MW)}$ + VOM + (HR)(F

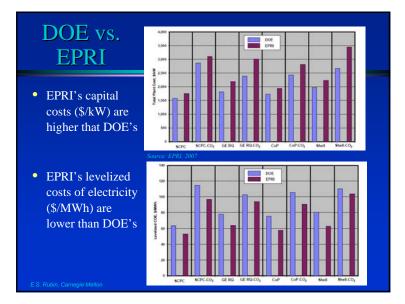
• Cost of CO₂ Avoided (\$/ton CO₂ avoided) = $\frac{($/MWh)_{ccs} - ($/MWh)_{reference}}{(CO_2/MWh)_{ref} - (CO_2/MWh)_{ccs}}$

<u>Also</u>: - Cost of CO₂ Captured (\$/ton CO₂ captured) - Cost of CO₂ Reduced/Abated (\$/ton CO₂ abated)

Ten Ways to Reduce Estimated Cost

(inspired by D. Letterman)


- 10. Assume high power plant efficiency
- 9. Assume high-quality fuel properties
- 8. Assume low fuel cost
- 7. Assume EOR credits for CO₂ storage
- 6. Omit certain capital costs
- 5. Report \$/ton CO₂ based on short tons
- 4. Assume long plant lifetime
- 3. Assume low interest rate (discount rate)
- 2. Assume high plant utilization (capacity factor)
- 1. Assume all of the above !

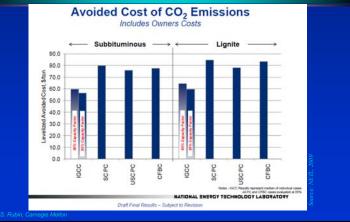

... and we have not yet considered the CCS technology!

Sources of Recent Cost Estimates

- IPCC, 2005: Special Report on CCS
- Rubin, et.al, 2007: *Energy Policy* paper
- EPRI, 2007: Report No. 1014223
- DOE, 2007: Report DOE/NETL-2007/1281
- EPRI, 2008: Report No. 1018329
- DOE, 2009: Pgh Coal Conference Presentation
- DOE, 2010: Low-Rank Coal Study (forthcoming)

Estimated Cost of New Power Plants with and without CCS

Ро	Incremental Cost wer Plants Using (
	Increase in levelized co	ost for 90% captur	e		
	Incremental Cost of CCS <u>relative</u> <u>to same plant type</u> without CCS <u>based on bituminous coals</u>	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant		
	Increases in capital cost (\$/kW) and generation cost (\$/kWh)	~ 60–80%	~ 30–50%		
The added cost to <u>consumers</u> due to CCS will be <u>much smaller</u> , reflecting the number and type of CCS plants in the generation mix at any given time.					
E.S. Rubin	, Carnegie Mellon				


Typical Cost of CO₂ Avoided

(Relative to a SCPC reference plant; bituminous coals)

Levelized cost in US\$ per tonne CO ₂ avoided			
Power Plant System (relative to a SCPC plant without CCS)	New Supercritical Pulverized Coal Plant	New Integrated Gasification Combined Cycle Plant	
Deep aquifer storage	~ \$70 /tCO ₂ ±\$15/t	~ \$50 /tCO ₂ ±\$10/t	
Enhanced oil recovery (EOR) storage	Cost reduced by ~ \$20–30 /tCO ₂		
Source: Based on IPCC, 2005; Rubin et al, 2007; DOE, 2007			

Capture accounts for most (~80%) of the total cost

DOE Cost Results for Low-Rank Coals at Western Power Plants

High capture energy requirements is a major factor in high CCS costs

Power Plant Type	Added fuel input (%) per net kWh output
Existing subcritical PC	~40%
New supercritical PC	25-30%
New coal gasification (IGCC)	15-20%
New natural gas (NGCC)	~15%

Changes in plant efficiency due to CCS energy requirements also affect plant-level pollutant emission rates (per MWh). A site-specific context is needed to evaluate the net impacts.

E.S. Rubin, Carnegie Mellon

Breakdown of "Energy Penalty" for CO₂ Capture (SCPC and IGCC)

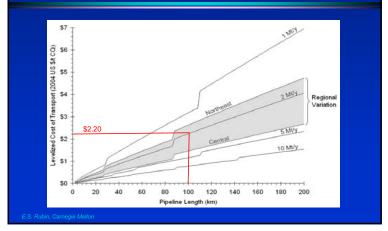
Component	Approx. % of Total Reqm't
Thermal Energy	~60%
CO ₂ Compression	~30%
Pumps, Fans, etc.	~10%

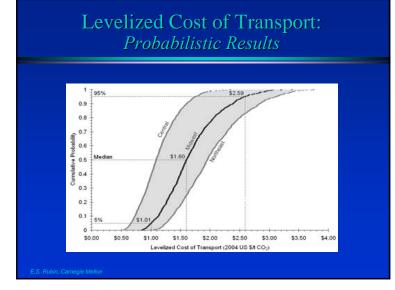
Analyzing Options for Power Plants (IECM: The Integrated Environmental Control Model)

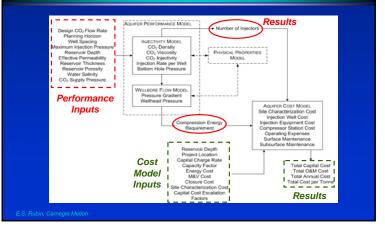
- A desktop/laptop computer model developed for DOE/NETL; free and publicly available at: www.iecm-online.com
- Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)
 - Major updates in late 2009 & 2010

E.S. Rubin, Carnegie Mellon

*The cost of CO*₂ *transport and storage*

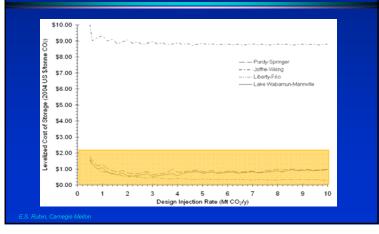

Pipeline Cost Model


- Multi-variate regression models based on data from 236 on-shore natural gas pipelines constructed in the U.S. from 1994 to 2003
 - Capital cost model is linear in pipe diameter, logarithmic in pipe length; reported in \$2004.
- Separate models for 6 regions
- Cost breakdowns for:
 - Materials
 - Labor
 - Eng'g, Overheads, AFUDC
 - Right-of-way

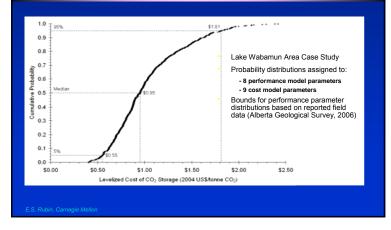


Levelized Cost of Transport: Deterministic Results

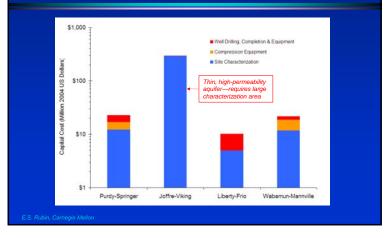
Saline Formation Storage Model

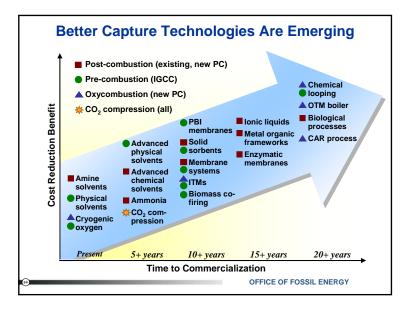

Illustrative Case Studies

- Data from 4 sites, with *kh* values from 4,500 to 940,000 md·ft
- Capital recovery factor =15% for all cases


Parameter	Northeast Purdy Unit	Joffre-Viking Pool	South Liberty	Lake Wabamur Area
Location	Oklahoma	Alberta	Texas	Alberta
Reservoir	Purdy Springer A	Viking Aquifer	Frio Formation	Mannville Aquifer
Lithology	Sandstone	Sandstone	Sandstone	Sandstone
Depth (m)	2,499	1,500	1,850	1,514
Permeability, k (md)	44	507	944	23
Net Sand, h (m)	91	30	300	59

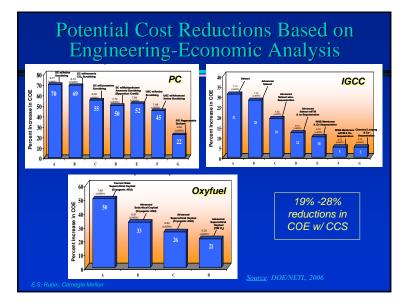
E.S. Rubin, Carnegie Mellon

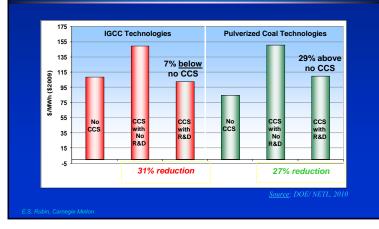

Levelized Cost of CO₂ Storage



Capital Cost Breakdown

Full details in technical reports & papers (available from IECM website) Technical Documentation: nics of CO₂ Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs Final Report of Science Deer rmed Under Contract No.: DE-AC26-04NT41817 Reporting Period Start, June 2007 Reporting Period End, May 2008 c model of pip CO₂ with appli carbon cap Sean T. McGry, Edward S. Rubin* Report Submitted, April 2008 U.S. Department of Energy ational Energy Technology La Procedia 7.51 ScienceDirect Energy Procedia GHOT-# Variability and Uncertainty in the Cost of Saline Formation Storage Sean T. McCoy⁴⁺, Edward S. Ruhm⁴ The effect of high oil prices on EOR project Sean T. McCov**, Edward S. Rabar

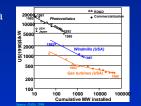



Two Approaches to Estimating Potential Cost Savings

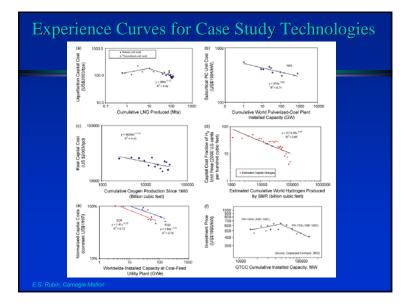
- <u>Method 1</u>: Engineering-Economic Analysis
 - A "bottom up" approach based on engineering process models, informed by judgments regarding potential improvement in key parameters

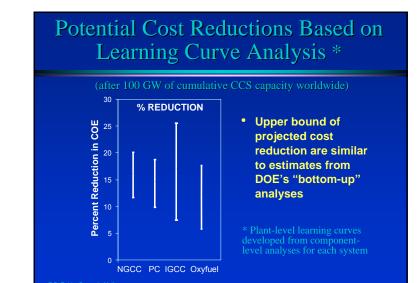
E.S. Rubin, Carnegie Mellon

Potential Cost Reductions Based on Engineering-Economic Analysis

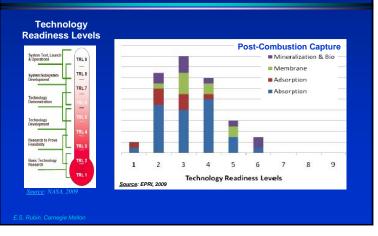


Two Approaches to Estimating Future Technology Costs

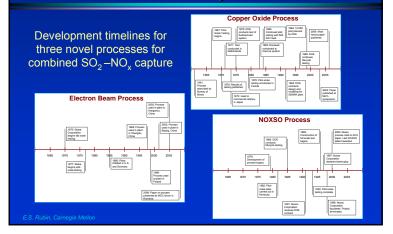

- <u>Method 1</u>: Engineering-Economic Analysis
 - A "bottom up" approach based on engineering process models, informed by judgments regarding potential improvements in key process parameters
- <u>Method 2</u>: Use of Historical Experience Curves
 - A "top down" approach based on applications of mathematical "learning curves" or "experience curves" that reflect historical trends for analogous technologies or systems

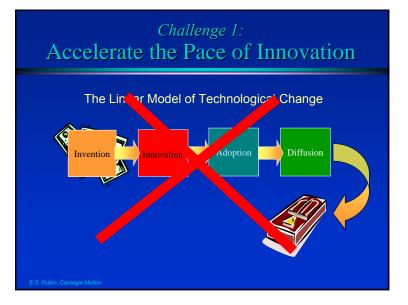

Empirical "Learning Curves"

• Cost trends modeled as a log-linear relationship between unit cost and cumulative production or capacity: $y = ax^{-b}$

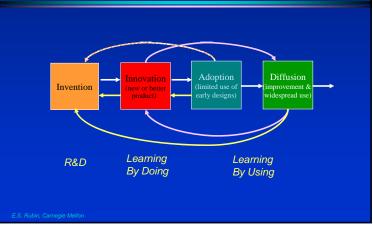


- Case studies used for power plant components:
 - Flue gas desulfurization systems (FGD)
 - Selective catalytic reduction systems (SCR)
 - Gas turbine combined cycle system (GTCC)
 - Pulverized coal-fired boilers (PC)
 - Liquefied natural gas plants (LNG)Oxygen production plants (ASU)
- Oxygen production plants (ASU)
 Hydrogen production plants (SMR)
- Camagia Mellon





Most New Capture Concepts Are Far from Commercial Availability



Most new concepts take decades to commercialize...many never make it

A More Realistic Model

Accelerating Innovation Requires

- Closer coupling and interaction between R&D performers and technology developers /users
- Better methods to identify promising options, evaluate new processes /concepts, and reduce number and size of pilot and demonstration projects (e.g., via improved simulation methods)
- New models for organizing the research enterprise
- Substantial and sustained support for R&D

The Critical Role of Policy

• The <u>pace and direction</u> of innovations in carbon capture will be strongly influenced by climate policy—which is critical for establishing **markets** for CCS technologies

E.S. Rubin, Carnegie Mellon

Conclusions

- Significant potential to reduce the cost of carbon capture via:
 - New or improved CO₂ capture technologies
 - Improved plant efficiency and utilization
- But must also build and operate some fullsize plants with current technology....
- And enact policies that create and foster markets for CCS technologies

E.S. Rubin. Carnegie Mello

