Physics-Guided Machine Learning : A New Framework for Accelerating Scientific Discovery

Vipin Kumar

University of Minnesota kumar001@umn.edu www.cs.umn.edu/~kumar

JISEA Annual Meeting, August 3, 2020

Physics-based Models of Dynamical Systems

 Relationships b/w input & output variables governed by physicsbased partial differential equations (PDEs)

۰_

Examples from Hydrology, Limnology, Fluid Dynamics, ...

Input	Output	Parameters
Rainfall, topography, land use, river width	River discharge	Soil conductivity, channel flow
Solar radiation, air temp, wind speed	Lake quality	Lake bathymetry, water clarity
Pressure, strain rate tensor, kinetic energy	Velocity field, lift, drag	Reynolds stress, flow geometry

Limitations of Physics-based Models

- Incomplete or missing physics (F, G)
 - Physics-based models often use approximate forms to meet "scale-accuracy" trade-off
 - Results in *inherent model bias*

 \boldsymbol{x}_t

 \boldsymbol{z}_t

θ

F, **G**

 y_t

PHY

- Unknown parameters (θ) need to be "calibrated"
 - Computationally Expensive
 - Easy to overfit: large number of parameter choices, small number of samples

"Black-box" Data Science Models

An alternative to modeling dynamical systems?

Choice of model family not governed by physics

Support Vector Machine

Deep Learning

 Hugely successful in commercial applications

Google Ads

IM AGENET

- DeepMind
 - NETFLIX

- But disappointing results in scientific domains!
 - Require lots of data
 - Can generate physically inconsistent results
 - Unable to generalize to unseen scenarios
 - Unable to provide valuable physical insights
- facebook I Meeting, August 3, 2020 The Parable of Google Flu: Traps in Big Data Analysis

Hybrid-Physics-Data (HPD) Modeling:

A Paradigm Shift in Data Science

Karpatne et al. "Theory-guided data science: A new paradigm for scientific discovery," TKDE 2017

Hybrid-Physics-Data (HPD) Modeling:

A Paradigm Shift in Data Science

Karpatne et al. "Theory-guided data Science: A new paradigm for scientific discovery," TKDE 2017

Questions

- Can machine learning (ML) models outperform physics based models given sufficient data?
- Can ML models leverage physics
 - to produce results that are physically consistent?
 - to learn with limited observation data?
 - To generalize to unseen scenarios
- Can physics guided ML models provide novel insights?

PGML for Modeling Lake Water Temperature: Performance Under Data Sparse Conditions

GLM: State of the Art physics based model used by USGS

RNN: A black-box machine learning model that can incorporate time

PGML: A machine learning framework that leverages physics

Joint work with Jordan Read (USGS)

PGML for Modeling Lake Water Temperature: Performance in Unseen Scenarios

Joint work with Jordan Read (USGS)

JISEA Annual Meeting, August 3, 2020

Acknowledgements

• Collaborators and Team Members

Anuj Karpatne Virginia Tech

Jordan Read USGS

Jacob Zwart USGS

Xiaowei Jia

UMN

Jared Willard UMN

Alison Appling (USGS), Samantha Oliver (USGS), Gretchen Hansen (UMN), Paul Hanson (U Wisconsin), William Watkins (USGS)